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Abstract— 2D wavelet transform has been used for texture 

and signal analysis. An algorithm based on wavelet 

transform has been developed for detecting ECG 

characteristic points. This work derives a 2-Dimensional 

spectrum estimator from some recent results on the statistical 

properties of wavelet packet coefficients of random 

processes. Textures are complex visual patterns composed of 

entities, or sub-patterns that have characteristic brightness, 

color, slope, size etc. Thus texture can be regarded as a 

similarity grouping in an image. Wavelet transforms have 

become appealing alternatives to the Fourier transform for 

image analysis and processing. The electrocardiogram (ECG) 

is widely used for diagnosis of heart diseases. Generally, the 

recorded ECG signal is often contaminated by noise. In order 

to extract useful information from the noisy ECG signals, the 

raw ECG signals has to be processed. The baseline 

wandering is significant and can strongly affect ECG signal 

analysis. The detection of QRS complexes in an ECG signal 

provides information about the heart rate, the conduction 

velocity, the condition of tissues within the heart as well as 

various abnormalities. It supplies evidence for the diagnosis 

of cardiac diseases. The QRS complex can be distinguished 

from high P or T waves, noise, baseline drift, and artifacts. 

By using this method, the detection rate of QRS complexes is 

above 99.8% for the MIT/BIH database and the P and T 

waves can also be detected, even with serious base line drift 

and noise. 
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I. INTRODUCTION 

The wavelet transform has become a useful computational 

tool for a variety of signal and image processing 

applications. For example, the wavelet transform is useful 

for the compression of digital image files; smaller files are 

important for storing images using less memory and for 

transmitting images faster and more reliably. The FBI uses 

wavelet transforms for compressing digitally scanned 

fingerprint images. NASA's Mars Rovers used wavelet 

transforms for compressing images acquired by their 18 

cameras. The wavelet-based algorithm implemented in 

software on-board the Mars Rovers is designed to meet the 

special requirements of deep-space communication. In 

addition, JPEG2K (the newer JPEG image file format) is 

based on wavelet transforms. Wavelet transforms are also 

useful for ‘cleaning' signals and images (reducing unwanted 

noise and blurring). Some algorithms for processing 

astronomical images, for example, are based on wavelet and 

wavelet-like transforms. 

In the past ten years much has been accomplished 

in the development of the theory of wavelets, and people are 

continuing to find new application domains. Theoretical 

accomplishments include specification of new bases for 

many different function spaces and characterization of 

orthogonal wavelets with compact support. Application 

areas so far discovered include signal processing, especially 

for non-stationary signals, image processing and 

compression, data compression, and quantum mechanics. 

Texture can be termed as a measure of the variation 

in the intensity of a surface, quantifying properties such as 

smoothness, coarseness and regularity. It is widely used as a 

region descriptor in image analysis and computer vision. 

Texture is characterized by the spatial distribution of gray 

levels in the neighbourhood of pixels. Resolution at which 

image is observed determines how texture is perceived. An 

effective and efficient texture analysis method is very useful 

in applications like analysis of aerial images, biomedical 

images and seismic images as well as automation of 

industrial applications, surface inspection. Texture analysis 

of images like textile images or different kinds of fabric 

material images can be done using different techniques. 

Medical information, composed of clinical data, 

images and other physiological signals, has become an 

essential part of a patient’s care, whether during screening, 

the diagnostic stage or the treatment phase. The automatic 

detection of ECG waves is important to cardiac disease 

diagnosis. A good performance of an automatic ECG 

analysing system depends heavily upon the accurate and 

reliable detection of the QRS complex, as well as the T and 

P waves. 

The detection of the QRS complex is the most 

important task in an automatic ECG analysis. Once the QRS 

complex has been identified, a more detailed examination of 

ECG signal, including the heart rate, the ST segment, etc. 

can be performed. The present approach uses a dyadic 

wavelet to characterize the ECG signal. The local maxima 

of the WT modulus at different scales can be used to locate 

the sharp variation points of ECG signals. The algorithm 

used first detects the QRS complex, then the T wave, and 

finally the P wave. 

II. LITERATURE SURVEY 

The wavelet transform originated in 1980 with Morlet, a 

French research scientist working on seismic data analysis 

(Morlet 1981, 1983; Goupillaudet al 1984), who then 

collaborated with Grossmann, a theoretical physicist from 

the CNRS in Marseille-Luminy. They developed the 

geometrical formalism of the continuous wavelet transform 

(Grossmann et al 1985, 1986, 1987, 1989; Grossmann 1988; 

Grossmann & Morlet 1984, 1985;Grossmann & Paul 1984; 

Grossmann & Kronland-Martinet 1988) based on invariance 

under the affine group namely translation and dilation--

which allows the decomposition of a signal into 

contributions of both space and scale. 

The Haar orthogonal basis (Haar 1909) was well-

known, but the lack of regularity of the functions it uses 

creates problems for decomposing smooth functions, whose 

Haar coefficients would only decay very slowly at infinity. 

Meyer was therefore surprised to discover an orthogonal 

basis built from a regular wavelet (Meyer 1986,1987, 1988). 
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He later extended it to the n-dimensional case in 

collaboration with his student Lemari (Lemari6 & Meyer 

1986). In 1987,Meyer (1988,1989,1990 and Mallat 1988) 

introduced the concept of multiresolution analysis, which is 

very similar to the Quadratic Mirror Filters technique 

(Esteban & Galand 1977) defined in digital processing and 

computer vision. This approach gives a general method for 

building orthogonal wavelet bases and leads to the 

implementation of fast wavelet algorithms (Mallat 1989). 

In ECG detection, one method to detect the P wave 

has been described by Jenkins, in which an esophageal 

electrode is used to get high amplitude P wave. This method 

is not widely applied due to uncomfortable sensation caused 

by the esophageal electrode and lead wire. Other algorithms 

for P wave detection including the syntactic method and the 

hidden Markov method are complex and time consuming. 

Gritzali proposed a simple method to detect P and T waves 

by length transformation, but it is not robust to noise. 

The techniques of texture analysis, such as Fourier 

(Rosenfeld 1980), Gabor (Daugman1985, Bovik 1990) and 

wavelet transforms (Mallat 1989, Laine 1993, Lu 1997) 

represent an image in a space whose co-ordinate system has 

an interpretation -that is closely related to the characteristics 

of a texture and signal (such as frequency or size). Both 

spatial and frequency domain approaches can be used for 

filtering images and capturing relevant information. Due To 

lack of spatial localization methods, which are based on the 

Fourier Transform perform poorly in practice. Gabor Filters 

provide good spatial localization; however, their usefulness 

is limited in practice because there is usually no single filter 

resolution at which one can localize a spatial structure in 

natural textures and signals. Compared with the Gabor 

transform, the wavelet transform features several 

advantages: 

 Variation in the spatial resolution allows it to represent 

 textures and signals at the most suitable scale 

 Wide range of choices is available for the wavelet 

function. 

So one can choose wavelets best suited for analysis 

in a specific application which make the wavelet transform 

attractive for texture and signal analysis. 

III. BASICS OF WAVELET TRANSFORM 

There are two basic types of wavelet transform. One type of 

wavelet transform is designed to be easily reversible 

(invertible); that means the original signal can be easily 

recovered after it has been transformed. This kind of 

wavelet transform is used for image compression and 

cleaning (noise and blur reduction). Typically, the wavelet 

transform of the image is first computed, in the wavelet 

representation is then modified appropriately, and then the 

wavelet transform is reversed (inverted) to obtain a new 

image. The second type of wavelet transform is designed for 

signal analysis; for example, to detect faults in machinery 

from sensor measurements, to study EEG or other 

biomedical signals, to determine how the frequency content 

of a signal evolves over time. In these cases, a modified 

form of the original signal is not needed and the wavelet 

transform need not be inverted (it can be done in principle, 

but requires a lot of computation time in comparison with 

the first type of wavelet transform). 

The transform of a signal is just another form of 

representing the signal. It does not change the information 

content present in the signal. The Wavelet Transform 

provides a time-frequency representation of the signal.  It 

was developed to overcome the short coming of the Short 

Time Fourier Transform (STFT), which can also be used to 

analyse non-stationary signals. While STFT gives a constant 

resolution at all frequencies, the Wavelet Transform uses 

multi-resolution technique by which different frequencies 

are analysed with different resolutions. 

A wave is an oscillating function of time or space 

and is periodic. In contrast, wavelets are localized waves. 

They have their energy concentrated in time or space and 

are suited to analysis of transient signals. While Fourier 

Transform and STFT use waves to analyse signals, the 

Wavelet Transform uses wavelets of finite energy. 

A. Discrete Wavelet Transform 

The Wavelet Series is just a sampled version of CWT and its 

computation may consume significant amount of time and 

resources, depending on the resolution required. The 

Discrete Wavelet Transform (DWT), which is based on sub-

band coding, is found to yield a fast computation of Wavelet 

Transform. It is easy to implement and reduces the 

computation time and resources required. 

The foundations of DWT in 1976 when techniques 

to decompose discrete time signals were devised [5]. Similar 

work was done in speech signal coding which was named as 

sub-band coding. In 1983, a technique similar to sub-band 

coding was developed which was named pyramidal coding. 

Later many improvements were made to these coding 

schemes which resulted in efficient multi-resolution analysis 

schemes. 

The DWT is given as 

W(a,b)=c(j,k)= ∑ 𝑓(𝑛) 𝜑𝑗,𝑘(𝑛)𝑛𝜖𝑧        (1) 

Where 𝜑𝑗,𝑘 is a discrete wavelet. 

In CWT the signals are analysed using a set of 

basis functions which relate to each other by simple scaling 

and translation. In the case of DWT, a time-scale 

representation of the digital signal is obtained using digital 

filtering techniques. The signal to be analysed is passed 

through filters with different cut off frequencies at different 

scales. 

IV. TEXTURE ANALYSIS 

A. Spectral analysis and spectral texture contents 

A new method is developed for texture analysis based on 

two dimensional wavelet packet spectrum. Two dimensional 

wavelet packet is used for texture classification. This 

method uses texture features of the image. This method also 

uses both multiple types of object features and context 

within the image. This method, using texture, and structure 

features, shows a significant improvement over previously 

published results in texture analysis. 

Wavelet packet spectra of some texture images are 

provided in fig. 1 and 2. The wavelet packet spectra have 

been computed from given method, where the 

decomposition level is 6 and the Daubechies wavelet with 

order r = 7 are used. Spectra computed from the Fourier 

transform are also given in these figures, for comparison 

purpose. 
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From a visual analysis of images given in fig. 1 and 

2 (by focusing on image interpretation without watching 

spectra given in the same figures), one can remark that most 

of these textures exhibit non-overlapping textons replicating 

repeatedly: thus, coarsely, several frequencies having 

significant variance contributions (from a theoretical 

consideration) can be distinguished, when the texture does 

not reduce to the replications of a single texton. 

In addition, when these textons occupy 

approximately the same spatial area (see for instance 

“Fabric” textures in fig. 2), the frequencies with high 

variance contributions (peak in the spectrum) are close in 

terms of their spatial location (from a theoretical 

consideration). 

The above heuristics, issued from visual image 

analysis, are confirmed by considering the wavelet packet 

spectra (see for instance spectra of “Fabric” textures in fig. 

2), whereas, in most cases, the two dimensional discrete 

Fourier transform exhibits only one peak. 

One can highlight that the poorness of the Fourier 

spectra is not due to a lack of resolution in the sampling step 

of the Fourier transform. This poorness can be explained by 

noting that Fourier transform is sensitive to global spatial 

regularity. In contrast wavelet packets can capture local 

spatial regularity and lead to a more informative spectrum 

estimator when several frequencies contribute in texture 

variance distribution. 

It is noted that when there is some a priori on the 

spectrum shape, a non-uniform sampling scheme can be 

applied by simply focusing on the particular tree structure 

associated with the sub bands-of-interest. These sub bands 

are those associated with wavelet packet functions having 

tight Fourier transform support across the frequencies where 

the spectrum exhibits sharp components. 

As a matter of example: by considering the 

spectrum of texture “D87” (see fig. 2), this spectrum by 

using a large amount of samples in [0, Π /4]c [0, Π /4] and 

very few samples in [0, Π]*[0, Π] \ [0, Π /4]*[0, Π /4] can 

be estimated accurately. The corresponding wavelet packet 

decomposition concerns fewer sub bands than a full wavelet 

packet decomposition and is thus with less computational 

complexity. 

 

 

 
Fig. 1: Textures images and their spectra 𝛾 analysed by 

using discrete Fourier and wavelet packet transforms. 

Abscissa of the spectra images consist of a regular grid over 

[0, Π/2] *[0, Π /2] [1] 

B. Implementation and results 

The poorness of the Fourier spectra is not due to a lack of 

resolution in the sampling step of the Fourier transform. 

This poorness can be explained by noting that Fourier 

transform is sensitive to global spatial regularity. In contrast 

wavelet packets can capture local spatial regularity and lead 

to a more informative spectrum estimator when several 

frequencies contribute in texture variance distribution. It is 

proved in the implementation results as shown in fig. 3. 

The proposed method of 2D Wavelet Packet 

Spectrum emphasizes 

 Suitability of wavelet based approaches, in comparison 

with the Fourier approach 

 Sensitivity of the wavelet transform to the similarity 

measures considered, which may follow from the 

coarse-irregular spectrum sampling induced by using 

wavelet method. 

It is noted that the wavelet transform is a particular 

case of the wavelet packet transform so that the wavelet 

spectrum can be seen through the wavelet packet spectrum 

by zooming on the neighbourhood of the zero frequency. 

This wavelet spectrum thus follows from a non-uniform 

sub-sampling of the wavelet packet spectrum (non-regular 

frequency grid). From similarity evaluations, this sampling 

Scheme consequently penalizes highly medium and high 

frequencies. 
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Fig. 2: Textures images and their spectra 𝛄 analysed by 

using discrete Fourier and wavelet packet transforms. 

Abscissa of the spectra images consist of a regular grid over 

[0, Π /2] * [0, Π/2] [1] 

V. SIGNAL ANALYSIS 

The electrocardiogram (ECG) is widely used for diagnosis 

of heart diseases. Generally, the recorded ECG signal is 

often contaminated by noise. In order to extract useful 

information from the noisy ECG signals, the raw ECG 

signals has to be processed. The baseline wandering is 

significant and can strongly affect ECG signal analysis. The 

detection of QRS complexes in an ECG signal provides 

information about the heart rate, the conduction velocity, the 

condition of tissues within the heart as well as various 

abnormalities. An algorithm based on wavelet transforms 

(WT's) has been developed for detecting ECG characteristic 

points. A good performance of an automatic ECG analysing 

system depends heavily upon the accurate and reliable 

detection of the QRS complex, as well as the T and P waves. 

A. ECG Detection 

The detection of the QRS complex is the most important 

task in automatic ECG signal analysis. ECG signal mainly 

contains noises of different types, namely frequency 

interference, baseline drift, electrode contact noise, 

polarization noise, muscle noise, the internal amplifier noise 

and motor artifacts. Artifacts are the noise induced to ECG 

signals that result from movements of electrodes. One of the 

common problems in ECG signal processing is baseline 

wander removal and noise suppression. Once the QRS 

complex has been identified, a more detailed examination of 

ECG signal, including the heart rate, the ST segment etc. 

 
(a) Fabric 

 
(b) Wavelet packet spectra of fabric (a) 

Fig. 3: Implementation results obtained by applying 2D 

wavelet packet spectrum on fabric (a) can be performed. 

The flow chart of ECG detection process is as shown in fig. 

4. 

In order to extract useful information from the 

ECG signal, the raw ECG signal should be processed. ECG 

signal processing is performed to form distinctive 

personalized signatures for every subject. The purpose of 

this process is to select and retain relevant information from 

original signal. The signal processing extracts diagnostic 

information from the ECG signal. The pre-processing stage 

removes or suppresses noise from the raw ECG signal. A 

ECG detection method is performed by using Discrete 

Wavelet Transform. One of the common problems in ECG 

signal processing is baseline wander removal and noise 

suppression. 

1) R Peak Detection 

After wavelet transforms of ECG signals are calculated, the 

decision rules are applied for R peak detection as follows 

a) Selection of Characteristic Scales: 

The WTs of ECG signals at small scales reflect the high 

frequency components and at large scales reflect low 

frequency components of the signal. According to the power 

spectra of ECG signal, noise and artifact, most energies of 

QRS complex are at the scale of 23  and 24, and the energy at 

the scale 23is largest. From the scale 23 to smaller or larger 

scales, the energy of the QRS complex decreases gradually. 

QRS complex with more high frequency components, the 

Energy at the scale 22 is larger than at the scale 23 , and for 

the QRS complex with more low Frequency components, 

the energy at the scale 24 is the larger than at the scale 23 . 



2 Dimensional Wavelet Transform for Texture and Signal Analysis 

 (IJSRD/Vol. 4/Issue 08/2016/051) 

 

 All rights reserved by www.ijsrd.com 216 

 
Fig. 4: ECG signal detection flow chart 

For larger scales, the energy of the QRS complex is 

decreased further and at the same time, the energies of 

motion artifact and noise are increased. Furthermore, the 

selection of more scales requires more calculations. So 

scales from 21 to 24 are selected. These scales are called 

characteristic scales. 

b) Determination of Modulus Maximum Lines of R 

waves 

The modulus maximum lines corresponding to R waves at 

characteristic scales must be determined. A method to select 

these modulus maxima from large to small scale is as 

 Step 1: Find all of the modulus maxima larger than 

threshold at scale 24 to obtain location set of modulus 

maxima {𝑛𝑘
4|𝑘 = 1 … … 𝑁}. 

 Step 2: Find a modulus maximum larger than the 

threshold on the neighbourhood of 𝑛𝑘
4 at the scale 23 

and define its location as 𝑛𝑘
3. If several modulus 

maxima exists, then the largest one is selected. But, the 

modulus maximum with its location nearest 𝑛𝑘
4 will be 

selected if the larger one is not larger than 1.2 times the 

others. If no modulus maximum exists, then set 𝑛𝑘
3, 𝑛𝑘

2, 

and 𝑛𝑘
1  to zero. So the location set {𝑛𝑘

34|𝑘 = 1 … … 𝑁} 

can be found. 

 Step 3: Similar to step 2, the location of the modulus 

maxima at scales 22 and 21 are found. 

 By searching modulus maximum at characteristic 

scales, the location set of modulus maximum lines is 

{𝑛𝑘
4 , 𝑛𝑘

3 , 𝑛𝑘
2 , 𝑛𝑘

1   |𝑘 = 1 … … 𝑁1}.Searching modulus 

maxima form large to small scale can save calculating 

time, 

c) Calculation of Singularity Degree 

At the characteristic scales from 21 to 24 the 𝛼1, 𝛼2, and 𝛼3 

of singularity point are calculated, where 𝛼𝑗 is decay of 

|𝑊2𝑗f(𝑛𝑘)|. The R wave always corresponds to 𝛼1 > 0, and 

mostly 𝛼2> 0. Although some modulus maxima of R waves 

with higher frequency components decay fast at large scales 

to make 𝛼2< 0, 𝛼1+ 𝛼2 is still greater than zero. For most R 

waves, their energies at scale 23 are larger than those at scale 

24, and the decay of |𝑊2𝑗f(𝑛𝑘)| from 23 to 24 is large enough 

to make not only 𝛼3 < 0, but also 𝛼1 + 𝛼2 + 𝛼3 < 0. For 

high frequency noise and interference with sharp 

irregularities, there are also 𝛼1< 0, 𝛼2< 0, and 𝛼3< 0, hence 

𝛼1 + 𝛼2 + 𝛼3 < 0. So from values of 𝛼1 + 𝛼2 + 𝛼3, the R 

wave, high frequency noise, and interference can not be 

distinguished. Therefore, 𝛼1 and 𝛼2 are selected and 

𝛼′=𝛼1 + 𝛼2/2 in order to make 𝛼′ > 0 for most of the R 

waves. For distorted R waves, the increase of the low 

frequency components can only make 𝛼′ much larger. So if 

𝛼′ suddenly decreases greatly or even becomes negative, the 

corresponding singularity point must be noise or 

interference, which will be eliminated. 

d) Elimination of Isolation and Redundant Modulus 

Maximum Lines 

By eliminating isolation and redundant maximum lines, the 

effects of motion artifact and muscle noise can be greatly 

reduced. 

For elimination of isolation modulus maximum 

lines, assuming 𝑛1
1 is the location of a positive maximum of 

𝑊2𝑗f (n) at the scale 21 and 𝑛𝑘
1  (k = 1……N1 ,k ≠ 1) is the 

location of the negative minimum of 𝑊2𝑗f (n) at the same 

scale. If interval between 𝑛1
1 and 𝑛𝑘

1   (k ≠ 1) is larger than 

threshold interval, the maximum (minimum) at 𝑛1
1 is 

considered the isolation maximum (minimum). The 

corresponding modulus maximum line is an isolation line 

and should be eliminated from the set of modulus maximum 

lines. The selected interval threshold should be 

approximately same as the interval of two modulus maxima 

created by widest possible QRS complex in order that the 

wide QRS complexes are not lost and artifacts and noise are 

mostly eliminated. 

The redundant modulus maximum lines are 

eliminated by following rules: 

Considering two negative minima as Min1 and 

Min2 with their absolute values as A1 and A2 respectively. 

 Rule 1: If A1 /L1 > 1.2 A2 /L2, Min2 is redundant. 

 Rule 2: If A2 /L2 > 1.2 A1 /L1, Min1 is redundant. 

 Rule 3: Otherwise if Min1 and Min2 are on the same 

side of positive maximum, then the minimum farther 

from the maximum is redundant. If Min1 and Min2 are 

on the different sides of maximum, then the minimum 

following the maximum is redundant. 

e) Detection of R peak 

R peak can be located at a zero crossing point of positive 

maximum-negative minimum pair at the scale 21. After 

eliminating the isolation and redundant lines from the 

location set of modulus maximum lines, 𝑛𝑘
1  (k = 1……N2) 

in the remaining set is only composed of the locations of the 

positive maximum-negative minimum pairs at the scale 21. 

Thus, the zero crossing points of these positive maximum-



2 Dimensional Wavelet Transform for Texture and Signal Analysis 

 (IJSRD/Vol. 4/Issue 08/2016/051) 

 

 All rights reserved by www.ijsrd.com 217 

negative minimum pairs are found to obtain the locations of 

R peak. 

2) QRS onset and offset detection 

After the detection of the R peaks, the onset and offset of the 

QRS complex are detected. The onset of the QRS complex 

is defined as the beginning of the Q wave (or R wave when 

Q wave is not present), and the offset of QRS complex is 

defined as the ending of the S wave (or R wave when the S 

wave is not present). 

Ordinarily, the Q and S waves are high frequency 

and low amplitude waves their energies are mainly at the 

small scale. So, the onsets and offsets of the QRS complexes 

at scale 21 are detected. The onset of QRS corresponds to 

the beginning of the first modulus maximum before the 

modulus maximum pair created by the R wave, and the 

offset of QRS corresponds to the ending of the first modulus 

maximum after that modulus maximum pair. From the 

modulus maximum pair of R wave, the beginning and 

ending of the first modulus maxima before and after the first 

modulus maximum pair are detected within a time window. 

The reason for detecting the beginning and ending at the 

scale 21, rather than at the original signal, is to avoid the 

effect of baseline drift. 

3) T and P wave detection 

After the detection of the QRS complex, the peaks, onsets 

and offsets of T and P waves are detected. 

The T wave creates a pair of modulus maxima with 

different sign of 𝑊2𝑗f (n) at scale 24, within time window 

after detected R peak. Because the T wave is almost 

symmetric to its Peak, the peak of the T wave corresponds 

to the zero crossing point of the modulus maximum pair 

with a -7(24-1 - 1) point delay and 22(24 +24-1 - 2) points 

respectively. In practice, the points near the onset and offset 

of the modulus maximum pair are approximately zero 

because the T wave is smoothed by equivalent filter Qj (𝜔) 

at the large scale, so those actually detected are inside the 

interval between onset and offset of the modulus maximum 

pair. When the onset and offset of the modulus maximum 

pair is detected, the onset is actually modified with a delay 

of -2 points and offset is 17 points. These practice delays are 

empirical. The passbands of filter Qj (𝜔) at different scales 

are as shown in table I. 

The peak, onset, offset of the P wave are detected 

similarly to those of the T wave within a time window 

before the detected R wave [32]. 

4) PR Interval, ST Interval and QT Interval 

The PR interval is defined as the interval between the onset 

of the P wave and the onset of the R wave. The ST interval 

is the interval between the offset of the S wave and offset of 

the T wave. The QT interval is calculated by finding the 

difference between the onset of the Q wave and the offset of 

T wave. These definitions of timing intervals are shown in 

fig. 5. Implementation and Results 

Scale a Lower 3dB Freq. Hz Upper 3dB Freq. Hz 

21 32.1 92.1 

22 18.6 62.4 

23 9.1 33.1 

24 4.1 16.2 

25 2.2 7.8 

Table 1: Passbands of filter Qj (𝝎) at different scales 

 
Fig. 5: ECG signal with scale 

In order to extract useful information from the 

ECG signal, the raw ECG signal should be processed. The 

MIT/BIH arrhythmia database is used to evaluate algorithm 

and the detection of the ECG signal. Only channel 1 of the 

two-channel ECG signal in the database was used. The 

wavelet transform algorithm produces 65 false positive (FP) 

beats (0.05%) and 112 false negative (FN) beats (0.1%) for 

a local detection failure of 177 beats (0.15%). Results have 

more QRS detection errors with other algorithms, but 

significant improvement was achieved with the wavelet 

transform algorithm. 

Following are the results got in implementations, 

given step by step shown in fig. 6, fig. 7, fig. 8, fig. 9, fig. 

10, fig 11, fig. 12. 

VI. CONCLUSION 

Texture analysis and signal analysis are very important 

fields for obtaining the detail information of textures and 

signals. Texture analysis is done by obtaining the PSD 

estimator using wavelet transform. An algorithm for R Peak 

and QRS complex detection using wavelet transform 

technique has been developed. The information about the R 

Peak and QRS complex obtained is very useful for ECG 

Classification, analysis, diagnosis, authentication and 

identification performance. 

A. Step 1 

 
Fig. 6: Original ECG signal 
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B. Step 2 

 
Fig. 7: First level decomposition 

C. Step 3 

 
Fig. 8: Second level decomposition 

D. Step 4 

 
Fig. 9: Third Level Decomposition 

E. Step 5 

 

Fig. 10: Fourth level decomposition 

F. Step 6 

 
Fig. 11: R, P and T peak detection 

G. Step 7 

 
Fig. 12: Interval, length and width of R, P and T waves 

Future work concern with this work is as below 

 Extension of the method to adaptive sampling of the 

PSD 

 Extension of the method with respect to non-

orthogonal wavelet packet transforms 

 From the results, it is observed that the onsets and 

offsets of P and T waves may not be detected to an 

accuracy required for morphological diagnosis when 

they are influenced seriously by noise or baseline drift 

or their amplitudes are too small. Also, only the 

uniphase P and T waves are considered here. This 

method can be considered for further development and 

supplemented with other techniques for the biphase P 

and T waves. 
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